一、复习引入 导语:小学五年级学习过简易方程,上初中后学习了一元一次方程,二元一次方程组,可化为一元一次方程的分式方程,运用方程方法可以解决众多代数问题和几何求值问题,是非常常见的一种数学方法。从这节课开始学习一元二次方程知识.先来学习一元二次方程的有关概念. 二、探究新知 l 探究课本问题2 分析: 1.参赛的每两个队之间都要比赛一场是什么意思? 2.全部比赛场数是多少?若设应邀请x个队参赛,如何用含x的代数式表示全部比赛场数? 整理所列方程后观察: 1.方程中未知数的个数和次数各是多少? 2.下列方程中和上题的方程有共同特点的方程有哪些? 4x+3=0; ;;; l 概念归纳: 1.一元二次方程定义: 分析:首先它是整式方程,然后未知数的个数是1,最高次数是2. 2.一元二次方程的一般形式: 分析: 1.为什么规定≠0? 2.方程左边各项之间的运算关系是什么?关于x的一元二次方程的各项分别是什么?各项系数是什么? 3.特殊形式:;; l 课本例题 分析:类比一元一次方程的去括号,移项,合并同类项,进行同解变形,化为一般形式后再写出各项系数,注意方程一般形式中的“-”是性质符号负号,不是运算符号减号. l 一元二次方程的根的概念 1.类比一元一次方程的根的概念获得一元二次方程的根的概念 2.下面哪些数是方程x2+5x+6=0的根? -4,-3,-2,-1,0,1,2,3,4. 3.你能用以前所学的知识求出下列方程的根吗? (1)x2-64=0(2)x2+1=0 (3)x2-3x=0 (4) 4.思考:一元一次方程一定有一个根,一元二次方程呢? 5.排球邀请赛问题中,所列方程的根是8和-7,但是答案只能有一个,应该是哪个? 归纳: 1一元二次方程的根的情况 2一元二次方程的解要满足实际问题 三、课堂训练 1.课本练习 2补充: 1).在下列方程中,一元二次方程的个数是( ). ①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-=0 A.1个 B.2个 C.3个 D.4个 2).关于x的方程(a-1)x2+3x=0是一元二次方程,则a范围________. 3).已知方程5x2+mx-6=0的一个根是x=3,则m的值为________ 4).关于x的方程(2m2+m)xm+1+3x=6可能是一元二次方程吗? 四、小结归纳 1.一元二次方程的概念及其一般形式,能将一个一元二次方程化为一般形式,并正确指出其各项系数. 2.一元二次方程的根的概念,能判断一个数是否是一个一元二次方程的根. 五、作业设计 必做:P4:1.2.4.6.7 选做:.P29:3.5.7 |