吾爱数学

27.2.1 第1课时 平行线分线段成比例

27.2.1 第1课时 平行线分线段成比例 第1张

27.2.1  相似三角形的判定 

第1课时  平行线分线段成比例

                

 教学目标:

1.了解相似比的定义;(重点)

2.掌握平行线分线段成比例定理的基本事实以及利用平行线法判定三角形相似;(重点)

3.应用平行线分线段成比例定理及平行线法判定三角形相似来解决问题.(难点)

 教学过程:

一、情境导入

如图,在△ABC中,D为边AB上任一点,作DE∥BC,交边AC于E,用刻度尺和量角器量一量,判断△ADE与△ABC是否相似.

 

二、合作探究

探究点一:相似三角形的有关概念

  如图所示,已知△OAC∽△OBD,且OA=4,AC=2,OB=2,∠C=∠D,求:

(1)△OAC和△OBD的相似比;

(2)BD的长.

 

解析:(1)由△OAC∽△OBD及∠C=∠D,可找到两个三角形的对应边,即可求出相似比;(2)根据相似三角形对应边成比例,可求出BD的长.

解:(1)∵△OAC∽△OBD,∠C=∠D,∴线段OA与线段OB是对应边,则△OAC与△OBD的相似比为OAOB=42=21;

(2)∵△OAC∽△OBD,∴ACBD=OAOB,∴BD=AC•OBOA=2×24=1.

方法总结:相似三角形的定义既是相似三角形的性质,也是相似三角形的判定方法.

变式训练:见《学练优》本课时练习“课堂达标训练” 第1题

探究点二:平行线分线段成比例定理

【类型一】 平行线分线段成比例的基本事实

  如图,直线l1、l2、l3分别交直线l4于点A、B、C,交直线l5于点D、E、F,直线l4、l5交于点O,且l1∥l2∥l3,已知EF∶DF=5∶8,AC=24.

(1)求CBAB的值;

(2)求AB的长.

 

解析:(1)根据l1∥l2∥l3推出CBAB=EFDE;(2)根据l1∥l2∥l3,推出EFDF=BCAC=58,代入AC=24求出BC即可求出AB.

解:(1)∵l1∥l2∥l3,∴CBAB=EFDE.又∵DF∶DF=5∶8,∴EF∶DE=5∶3,∴CBAB=53;

(2)∵l1∥l2∥l3,EF∶DF=5∶8,AC=24,∴EFDF=BCAC=58,∴BC=15,∴AB=AC-BC=24-15=9.

方法总结:运用平行线分线段成比例定理时,一定要注意正确书写对应线段的位置.

变式训练:见《学练优》本课时练习“课堂达标训练” 第3题

【类型二】 平行线分线段成比例的基本事实的推论

  如图所示,已知△ABC中,DE∥BC,AD=2,BD=5,AC=5,求AE的长.

 

解析:根据DE∥BC得到ADAB=AEAC,然后根据比例的性质可计算出AE的长.

解:∵DE∥BC,∴ADAB=AEAC,即22+5=AE5,∴AE=107.

方法总结:解题的关键是深入观察图形,准确找出图形中的对应线段,正确列出比例式.

变式训练:见《学练优》本课时练习“课堂达标训练”第4题

探究点三:相似三角形的引理

【类型一】 利用相似三角形的引理判定三角形相似

  如图,在▱ABCD中,E为AB延长线上的一点,AB=3BE,DE与BC相交于点F,请找出图中所有的相似三角形,并求出相应的相似比.

 

解析:由平行四边形的性质可得:BC∥AD,AB∥CD,进而可得△EFB∽△EDA,△EFB∽△DFC,再进一步求解即可.

解:∵四边形ABCD是平行四边形,∴BC∥AD,AB∥CD,∴△EFB∽△EDA,△EFB∽△DFC,∴△DFC∽△EDA,∵AB=3BE,∴相似比分别为1∶4,1∶3,3∶4.

方法总结:求相似比不仅要找准对应边,还需要注意两个三角形的先后顺序.

变式训练:见《学练优》本课时练习“课堂达标训练”第5题

【类型二】 利用相似三角形的引理求线段的长

  如图,已知AB∥EF∥CD,AD与BC相交于点O.

(1)如果CE=3,EB=9,DF=2,求AD的长;

(2)如果BO∶OE∶EC=2∶4∶3,AB=3,求CD的长.

 

解析:(1)根据平行线分线段成比例可求得AF=6,则AD=AF+FD=8;(2)根据平行线AB∥CD分线段成比例知BO∶OE=AB∶EF,结合已知条件求得EF=6;同理由EF∥CD推知EF与CD之间的数量关系,从而求得CD=10.5.

解:(1)∵CE=3,EB=9,∴BC=CE+EB=12.∵AB∥EF,∴FOAF=EOEB,则FOEO=AFEB.又∵EF∥CD,∴FOFD=EOEC,则FOEO=FDEC,∴AFEB=FDEC,即AF9=23,∴AF=6,∴AD=AF+FD=6+2=8,即AD的长是8;

(2)∵AB∥CD,∴BO∶OE=AB∶EF.又∵BO∶OE=2∶4,AB=3,∴EF=6.∵EF∥CD,∴OEOC=EFCD.又∵OE∶EC=4∶3,∴OEOC=47,∴EFCD=47,∴CD=74EF=10.5,即CD的长是10.5.

方法总结:运用平行线分线段成比例的基本事实的推论一定要找准对应线段,以防解答错误.

变式训练:见《学练优》本课时练习“课堂达标训练”第6题

三、板书设计

1.相似三角形的定义及有关概念;

2.平行线分线段成比例定理及推论;

3.相似三角形的引理.

 教学反思:

    本节课宜采用探究式教学,教师在教学中是学生学习的组织者、引导者、合作者和共同研究者.鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新.上课时教师只在关键处点拨,在不足时补充.教师与学生平等地交流,创设民主、和谐的学习氛围.


免责声明:
       数学资料分享者博客提供的资源,都来自网络,版权争议与本博客无关,所有内容仅限用于学习和研究目的。不得将上述内容用于商业或者非法用途,否则,一切后果请用户自负,我们不保证内容的长久可用性,通过使用本博客内容随之而来的风险与本博客无关,您必须在下载后的24个小时之内,从您的电脑/手机中彻底删除上述内容。如果您喜欢该资源,请支持正版资料,购买注册或使用,得到更好的正版服务。侵删请致信E-mail:[email protected]

    

点击这里复制本文地址 以上内容由吾爱数学整理呈现,请务必在转载分享时注明本文地址!如对内容有疑问,请联系我们,谢谢!

支持Ctrl+Enter提交

吾爱数学 © All Rights Reserved.  Powered By Z-Blog 备案号:豫ICP备19032609号-1
豫ICP备19032609号 | 网站地图 |七年级数学 |八年级数学 |九年级数学|中考数学资料|初中数学试题解析|常用软件||